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1. Introduction. A cartographer of the diophantine landscape is compelled to acknowledge the
distinguished position occupied by the investigation of diophantine systems in which there are believed
to be few other than the obvious solutions. When these systems are symmetric, the task of verifying
such a belief has come to be called a paucity problem. Although the literature surrounding this topic
is by now extensive when the underlying summands are perfect powers (see, for example, the sources
recorded in the bibliography), little is known for more general situations. The object of this note is to
establish that the number of solutions of certain systems of additive equations is dominated, in essence,
by the diagonal contribution alone.

In order to state our main conclusion precisely, we require some notation. Suppose that t is a positive
integer, and let f1(x), . . . , ft(x) be polynomials with rational coefficients of respective degrees k1, . . . , kt.
When P is a positive number, denote by Ss(P ; f) the number of integral solutions of the simultaneous
equations

s∑
i=1

(fj(xi)− fj(yi)) = 0 (1 6 j 6 t), (1)

with 1 6 xi, yi 6 P (1 6 i 6 s).

Theorem 1. Suppose that the polynomials fi(x) ∈ Q[x] (1 6 i 6 t) satisfy the condition that
1, f1, . . . , ft are linearly independent over Q. Suppose also that A is a positive number sufficiently
large in terms of t, k and the coefficients of f1, . . . , ft. Then whenever max{k1, . . . , kt} > 2 and P > 3,
one has

St+1(P ; f1, . . . , ft)� P t+1(logP )A.

Plainly, those solutions of the system (1) in which x1, . . . , xs are simply a permutation of y1, . . . , ys
provide a contribution to St+1(P ; f) that ensures the lower bound

St+1(P ; f) > (t+ 1)!P t+1 +Ot(P
t). (2)

Thus we may assert that the conclusion of the theorem is somewhat close to a paucity result. We
remark that the bound recorded in the theorem was already available from work of Wooley [28] in the
special case wherein fi(x) = xki (1 6 i 6 t) and 1 6 k1 < k2 < · · · < kt. Moreover, when t = 1 and
f1(x) is a cubic polynomial, it follows from Theorem 2 of Wooley [32] that

S2(P ; f1) = 2P 2 +Oε(P
5/3+ε).

Aside from the inherent interest of paucity problems, estimates of the type presented in the above
theorem have potential for application in the sharpest versions, due to Parsell [19], of the new iterative
methods of Vaughan and Wooley (see especially [23], [24], [27], [31]) involving exponential sums over
smooth numbers.

2. Preliminary skirmishing. Before advancing to the argument described in the next section, we
prepare an eliminant polynomial and discuss some associated properties. We refer to an ordered t-tuple
(f1, . . . , ft) of polynomials with rational coefficients as being well-conditioned when

(1) one has fi(x) ∈ Z[x] (1 6 i 6 t), and
(2) one has fi(0) = 0 (1 6 i 6 t), and
(3) the degrees ki of the polynomials fi(x) satisfy 1 6 k1 < k2 < · · · < kt.
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By substituting the polynomial fi(x) − fi(0) in place of fi(x) (1 6 i 6 t) in the system (1), one may
plainly suppose that fi(0) = 0 (1 6 i 6 t). Thus, on replacing the equations (1) by suitable linear
combinations thereof, it is apparent that whenever fi(x) ∈ Q[x] (1 6 i 6 t) satisfy the condition that
1, f1, . . . , ft are linearly independent over Q, then there is no loss of generality in supposing instead that
f is a well-conditioned t-tuple. Moreover, the coefficients of the polynomials in the new system plainly
depend at most on those in the original system.

It is convenient in what follows to refer to a polynomial F (x) ∈ Z[x1, . . . , xt] as being asymptotically
definite if there exists a number C with the property that whenever xi > C (1 6 i 6 t), then one has

|F (x1, . . . , xt)| > 1.

Finally, we write f ′(x) for the derivative of the polynomial f(x). As a prerequisite to a discussion of
eliminant polynomials, we introduce a generalisation of the Vandermonde determinant

Vt(x) =
∏

16i<j6t

(xj − xi) = det(xi−1
j )16i,j6t.

Lemma 1. Suppose that (f1, . . . , ft) is a well-conditioned t-tuple of polynomials with respective degrees
k1, . . . , kt. Then there exists an asymptotically definite polynomial Θ = Θ(x; f) with the property that

det(f ′i(xj))16i,j6t = Vt(x)Θ(x; f). (3)

Moreover, the total degree of Θ is

d =
t∑
i=1

ki −
t(t+ 1)

2
.

Proof. We apply the theory of symmetric functions, specifically Schur functions (see Macdonald [17]).
When d1, . . . , dt are integers with

1 6 d1 < d2 < · · · < dt,

we define the polynomial K(x;d) by means of the relation

det(xdi−1
j )16i,j6t = K(x;d)Vt(x). (4)

For the sake of concision, we make use of the notation used in Macdonald [17]. Thus, by equation (3.1)
of [17, Chapter I], one has K(x;d) = sλ, where λ is the partition

(dt − t, dt−1 − (t− 1), . . . , d1 − 1).

But equation (5.12) of [17, Chapter I] shows that sλ =
∑
T x

T , where the summation is over all semi-
standard tableaux T of shape λ, and here, if the weight of T is α = (α1, . . . , αt), then xT is the monomial
xα1

1 · · ·x
αt
t . Note that if λ = (0, . . . , 0), then one adopts the convention that sλ = 1.

Observe next that by elementary properties of determinants, the polynomial

det(f ′i(xj))16i,j6t (5)

is a linear combination of polynomials of the shape

det(xdi−1
j )16i,j6t, (6)

with 1 6 di 6 ki (1 6 i 6 t). A moment’s reflection here reveals that this linear combination contains
the polynomial

det(xki−1
j )16i,j6t,

with a non-vanishing coefficient. By permuting rows within the determinants (6), there is no loss of
generality in supposing that 1 6 d1 6 d2 6 . . . 6 dt. Then each such determinant contributes either 0,
or else a polynomial of the shape (4), to the expansion of (5). We may therefore conclude that

det(f ′i(xj))16i,j6t = K̂(x;k)Vt(x),
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where K̂(x;k) is a polynomial of total degree

d =
t∑
i=1

(ki − 1)−
t∑
i=1

(i− 1),

in which the homogeneous part of highest degree is a non-zero multiple of sΛ, with Λ = (kt−t, kt−1−(t−
1), . . . , k1 − 1). But in view of the discussion concluding the previous paragraph, whenever xi > B > 1

(1 6 i 6 t), one has sΛ > Bd, and thus we conclude that K̂(x;k) is asymptotically definite. This
completes the proof of the lemma.

Define next the polynomials φi,s = φi,s(x; f) by taking

φi,s(x) = fi(x1) + · · ·+ fi(xs) (1 6 i, s 6 t).

Our next lemma establishes the existence of an eliminant polynomial suitable for subsequent delibera-
tions.

Lemma 2. Suppose that t > 2, and that (f1, . . . , ft) is a well-conditioned t-tuple of polynomials. Then
there exists a polynomial Ψ(z) ∈ Z[z1, . . . , zt], with total degree and coefficients depending at most on t,
k and the coefficients of f1, . . . , ft, such that

Ψ(φ1,t−1(x), . . . , φt,t−1(x)) = 0, (7)

and yet

Ψ(φ1,t(x), . . . , φt,t(x)) 6= 0. (8)

Proof. The existence of a non-trivial polynomial Ψ(z) ∈ Z[z1, . . . , zt], for which Ψ(φ1,t−1, . . . , φt,t−1)
is identically zero, follows by considering transcendence degrees. Let K = Q(φ1,t−1, . . . , φt,t−1). Then
K ⊆ Q(x1, . . . , xt−1), so that K has transcendence degree at most t − 1 over Q. But then the t
polynomials φi,t−1(x) ∈ K (1 6 i 6 t) cannot be algebraically independent, whence the existence of
the above polynomial Ψ follows immediately.

In order to verify the condition (8), consider any non-trivial polynomial Ψ of smallest total degree
for which the polynomial equation (7) holds, and suppose, if possible, that Ψ(φ1,t(x), . . . , φt,t(x)) is
identically zero. Then the polynomials

(∂/∂xi)Ψ(φ1,t(x), . . . , φt,t(x)) (1 6 i 6 t)

are also identically zero. On applying the chain rule, we therefore find that

t∑
j=1

f ′j(xi)Ψj(φ1,t(x), . . . , φt,t(x)) = 0 (1 6 i 6 t), (9)

where we have written Ψj(z) for (∂/∂zj)Ψ(z). But as a consequence of Lemma 1, the polynomial

det(f ′j(xi))16i,j6t

is not identically zero, and thus it follows from (9) that each of the polynomials Ψj(φ1,t(x), . . . , φt,t(x))
(1 6 j 6 t) must be identically zero. However, since Ψ(z) is a non-constant polynomial, at least one
of the derivatives Ψj(z) (1 6 j 6 t) must be non-zero. Thus there exists a non-trivial polynomial
Ψj(z) ∈ Z[z] for which, in particular, one has

Ψj(φ1,t−1(z), . . . , φt,t−1(z)) = 0.

Since the latter conclusion contradicts the minimality of the total degree of Ψ, we are forced to conclude
that the inequality (8) does indeed hold.
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3. Application of the eliminant polynomial. We are now equipped to prosecute our proof of
Theorem 1. We begin by noting that the conclusion of the theorem is classical when t = 1. For on
writing e(z) for exp(2πiz), and

F (α) =
∑

16x6P

e(αf1(x)),

it follows from Hua’s lemma (see, for example, Theorem 4 of Hua [16]) that whenever k1 > 2 and P > 3,
one has

S2(P ; f1) =

∫ 1

0

|F (α)|4dα� P 2(logP )A,

where A is a positive number depending at most on k1 and the coefficients of f1. We may therefore
suppose in what follows that t > 2, and moreover the discussion of §2 permits the assumption that
(f1, . . . , ft) is well-conditioned. We thus infer from Lemma 1 that there exists an asymptotically def-
inite polynomial Θ(x; f) with the property that the relation (3) holds. We write C for the parameter
associated with Θ(x; f) from our definition of asymptotic definiteness.

We next dispose of small solutions of (1) counted by St+1(P ; f). Write

G(α) =
∑

16x6C

e(α1f1(x) + · · ·+ αtft(x))

and

H(α) =
∑

C<x6P

e(α1f1(x) + · · ·+ αtft(x)).

Then by orthogonality one finds that

St+1(P ; f) =

∫
[0,1)t

|G(α) +H(α)|2t+2dα

�
∫

[0,1)t
|G(α)|2t+2dα +

∫
[0,1)t

|H(α)|2t+2dα.

Thus, on writing S∗s (P ; f) for the number of integral solutions of (1) with C < xi, yi 6 P (1 6 i 6 s), a
trivial estimate for G(α) yields the upper bound

St+1(P ; f)� 1 + S∗t+1(P ; f).

Let S0
t+1(P ; f) denote the number of integral solutions of the system

t∑
i=1

fj(xi)− fj(xt+1) =

t∑
i=1

fj(yi)− fj(yt+1) (1 6 j 6 t), (10)

with C < xi, yi 6 P (1 6 i 6 t), satisfying the condition that xi = xj for some 1 6 i < j 6 t. Also, let

Ŝt+1(P ; f) denote the complementary number of solutions of (10) in which xi 6= xj for 1 6 i < j 6 t.
Then plainly

S∗t+1(P ; f) = S0
t+1(P ; f) + Ŝt+1(P ; f). (11)

But it follows from a consideration of the underlying diophantine equations that

S0
t+1(P ; f)�

∫
[0,1)t

H(2α)H(α)t−1H(−α)t+1dα

�
∫

[0,1)t
|H(2α)H(α)2t| dα,

and thus, by Hölder’s inequality, we find that

S0
t+1(P ; f)�

(∫
[0,1)t

|H(α)|2t+2dα
)t/(t+1)(∫

[0,1)t
|H(2α)|2t+2dα

)1/(2t+2)

.
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Then on considering the underlying diophantine equations, we deduce that

S0
t+1(P ; f)�

(
S∗t+1(P ; f)

)(2t+1)/(2t+2)
,

whence by (2) and (11),

S∗t+1(P ; f)� Ŝt+1(P ; f). (12)

We now analyse the solutions of (10) counted by Ŝt+1(P ; f). By Lemma 2, there exists a polynomial
Ψ(z) ∈ Z[z1, . . . , zt], with total degree and coefficients depending at most on t, k and the coefficients of
f1, . . . , ft, such that whenever ui = ut+1 for some 1 6 i 6 t, one has

Ψ(φ1,t(u)− f1(ut+1), . . . , φt,t(u)− ft(ut+1)) = 0,

and yet
Ψ(φ1,t(u), . . . , φt,t(u)) 6= 0.

It follows that for some non-trivial polynomial Φ(u) ∈ Z[u1, . . . , ut+1], one has

Ψ(φ1,t(u)− f1(ut+1), . . . , φt,t(u)− ft(ut+1)) = Φ(u)
t∏
i=1

(ui − ut+1). (13)

For the sake of concision, we write

Υ(z) = Φ(z)

t∏
i=1

(zi − zt+1).

Let T1 denote the number of solutions of (10) counted by Ŝt+1(P ; f) having the property that Υ(y) is
non-zero, and let T2 denote the corresponding number of solutions with Υ(y) = 0. Then

Ŝt+1(P ; f) = T1 + T2. (14)

Consider first a solution (x,y) counted by T1. In view of (10) and (13), one has

Φ(x)
t∏
i=1

(xi − xt+1) = Φ(y)
t∏
i=1

(yi − yt+1). (15)

Fix a choice of y with Υ(y) 6= 0. Then if τ(n) denotes the divisor function, we find from (15) that there
are at most (2τ(|Υ(y)|))t possible choices for xi − xt+1 (1 6 i 6 t). Fixing any one such choice of the
latter t quantities, we write xi = xt+1 + di (1 6 i 6 t). Then on substituting these fixed choices of y
and d into (10), we find that xt+1 satisfies the evidently non-trivial equation

t∑
i=1

f1(xt+1 + di)− f1(xt+1) =
t∑
i=1

f1(yi)− f1(yt+1).

One therefore has O(1) possibilities for xt+1, whence the total number of solutions of this type is

T1 �
∑
y

(τ(|Υ(y)|))t ,

where the summation is over y with 1 6 yi 6 P (1 6 i 6 t+ 1) and Υ(y) 6= 0. We thus conclude from
Theorem 3 of Hua [16] that

T1 � P t+1(logP )A, (16)

where the positive number A depends at most on t, k and the coefficients of f1, . . . , ft.
Next consider a solution (x,y) counted by T2. The number of values of y with 1 6 yi 6 P (1 6 i 6

t + 1) for which Υ(y) = 0 is O(P t) (see, for example, the proof of Lemma 2 of Wooley [28]). Fix any
one such choice of y, and any one of the O(P ) possible choices for xt+1. Then on writing

Nj = fj(xt+1)− fj(yt+1) +
t∑
i=1

fj(yi) (1 6 j 6 t),
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we find from (10) that
t∑
i=1

fj(xi) = Nj (1 6 j 6 t). (17)

Suppose first that x is a singular solution of (17). Then one has

det(f ′i(xj))16i,j6t = 0,

whence from (3) we have

Θ(x; f)
∏

16i<j6t

(xj − xi) = 0. (18)

But by hypothesis, one has xi 6= xj for 1 6 i < j 6 t, and moreover Lemma 1 ensures that since xi > C
(1 6 i 6 t), one has Θ(x; f) 6= 0. Then the equation (18) is impossible, whence there are no singular
solutions x counted by T2.

We complete our treatment of T2 by considering the non-singular points x satisfying (17). According
to Theorem 7.7 of Hartshorne [5, Chapter 1], the number of irreducible components contained in the
intersection (17) is at most k1k2 · · · kt. If such a component has positive dimension, then it arises from
an improper intersection and is consequently singular. Thus it follows that all the points that concern
us here arise from components of the intersection having dimension zero, whence their number is also
at most k1k2 · · · kt. Then we may conclude that for the fixed choice of (xt+1,y) under consideration,
there are O(1) permissible choices of x1, . . . , xt. Finally, therefore, we deduce that

T2 � P t+1. (19)

On combining (12), (14), (16) and (19), we at last arrive at the upper bound

St+1(P ; f)� P t+1(logP )A,

and this completes the proof of our theorem.
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